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Axisymmetric Modes of Cylindrical Resonators
with Cascaded Inhomo~eneous Dielectrics
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Fig. 1. Geometrical configuration of cascaded circular waveguide sections
loaded with inhomogeneous dielectrics.

the dielectric loaded cavity need to be determined precisely. Several
coupled dielectric rod or ring resonators can be arranged coaxially
in a circular waveguide to form a bandpass filter. The resonant
frequencies of the axisymmetric TEols and TMOI 6 modes have been
calculated by using a mode-matching technique [3], [4]. For both
modes, the resonant frequencies are below the cutoff frequency of
the TEo1 waveguide mode. In [5] and [6], the resonant frequency
of nonaxisymmetric hybrid modes are calculated by using a similar
technique.

In [7], a finite integration technique (FIT) based on the integral
forms of Maxwell’s equations is proposed to calculate the resonant

frequencies of a cavity filled with an inhomogeneous dielectric. A
brief summary of mode nomenclature is also provided in [7]. In [8], a
variational expression is used to calculate the resonant frequencies of
axisymmetric modes where the radial variation of field components
are expanded by the first-order finite element (FE) basis functions
and the axial variation is expanded in terms of sinusoidal. Finite-
difference method in the frequency domain [9], finite-difference
time-domain (FDTD) method [10], and finite element method (FEM)

Jean-Fu Kiang [11 ] have also been used.
Mode-matching method proves to be efficient for many canonical

Abstract— A generic numerical scheme is developed to calculate
the resonant freq;ency of axisymmetric modes in an inhomogeneous
cylindrical dielectric resonator. The resonator consists of sections of
cylindrically stratified dielectrics within a cylindrical wavegnide. In each
section, the TMo m and TEon wavegnide modes are solved by expandbtg
the H+ and E+ components in terms of the eigenmodes in an empty
waveguide. The fields in each section are then expanded in terms of these
TMo ~ and TEom modes. The transverse resonance technique is then
applied to obtain the resonant frequencies. Comparison with literatures
vatidates tbe effectiveness of this approach. Results with continuous
dielectric profiles are also obtained.

I. INTRODUCTION

Cylindrical cavities have been used to cure materials [1], to
measure complex permittivity of materials [2], and as a resonator
in microwave circuits [3]–[ 11]. In all these applications, the circular
waveguide section forming the cavity contains inhomogeneous di-
electrics. For the resonator application, the resonant frequencies of
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resonator structures. For example, the cylindrical dielectric rod and
ring in a cylindrical cavity. Usually, the eigenmodes in a stratified
medium need to be solved first to represent the field distribution in

the later stage. If the dielectric ring consists of many layers or if
a dielectric rod has a continuous permittivity profile, conventional
mode-matching method becomes tedious or impossible. For such
structures, finite element method, FDTD method, and FIT method can
be used at the expense of finer grids to express the fields accurately.

In this paper, we will present a generic numeric scheme to solve
such problems. First, the eigenmodes in each uniform dielectric
loaded waveguide section are obtained by solving a symmetric
eigenvalue problem, where dielectrics with continuous profile can
also be handled. Reflection matrices at the junctions of waveguide
sections are defined to reduce the number of unknowns. Then the
transverse resonance technique is applied to obtain the resonant
frequencies of the resonators.

IL FORMULATION

Fig. 1 shows the configuration of a cylindrical resonator with radius
a, which consists of several sections of circular waveguides loaded
with inhomogeneous dielectrics. The permittivity in each layer is a
piecewise continuous functions of p and is independent of ~ and z.

0018–9480/96$05.00 01996 IEEE



IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 44, NO. 9, SEPTEMBER 1996 1607

Axisymmetric modes exist in such a medium, and are categorized

into TM ( to z ) and TE ( to z ) modes [7]. For tlie TM modes, the
existing field components are E=, EP, and H4. For the TE modes,

the existing field components are H., HP, and Ed.
First, consider the TM modes in an infinitely long circular wave-

guide with an inhomogeneous dielectric profile which is uniform
along the axial direction. Expand Maxwell’s equations to obtain

(1)

Next, express H+ of the nth eigenmodes by a set of basis functions

%(P) as

= ~ bnmsm(p)e+’’.zz
m=l

= i: S(p)e*zknzz (2)

where ~~ = [bnl, . . . b~N], and S’(p) = [SI(p),. ~~, Siv(p)].
Choose the H+ distribution in an empty circular waveguide as
the basis functions, i.e., S~ (p) = .J1(&~p/a) with Jo (em) = O.

Stibstitute (2) into (l), then take the inner product of SP (p) with the
resulting equation and use the integration by parts technique to have

~ b.m [-(~&PS,(P)&PS~(P)) + (S,(P), W2PPS~(P))]
m=l

N

= it. ~ bnm(Sp(p), pc-lSm(p)),l < P S N (3)
?n=l

where the inner product is defined over O < p < a. Hence, (3)
constitutes a symmstric eigenvalue problem to be solved numerically
for the propagation constant k... ‘IMe eigenvectors T.’s satisfy

the orthonormality specification that ~~ o N . ~~ = 6P~ where

N = (S(p), PC–l St (p)). The general field in the waveguide can
be expressed in terms of these eigenmodes as

N

H+ = ~ &(p)e*’k’”’an = it(p) . .*ZRZ’ .6

n=l

E, = f *~ A(P)e*’kn%”a. = +~J’(p).i?=..+’RZZ .~
n=l

(4)

whe~e @t(p) = [#l(p),. ., ,#N(p)], ~z = diag. [kl,, ..0, kNz~, and

e+ ’17Zz = diag. [e+ ’k’”z, o~., e+ ’kNZ’].
Next, use the waveguide modes to represent the fields in layer (1)

of the resonator as

H~~ = j;(p). [ezK’”zL . @ + e-tK’””t . ~~]

El, = -&~~(P) . i?i= [e2R’zz’ . cii – e-’k’z=’ ~El] (5)

where a = z + d!. The first term in H~4 and EiP is a wave
propagatirig in the + z direction, and the second term is a wave
propagating in the – z direction. Define a reflection matrix ~ul

at the upper boundary z = – di– 1 so that the reflection matrix
multiplied by the upward wave gives the downward wave, i.e.,

Rule aClzkl.&l = e–~~1.~1 .~i. Define mother reflection matrix fim

at the lower boundary z = – di so that the reflection ma_tix multiplied
by the downward wave gives the upward wave, i.e., % . pi = Cil.
Thus, we obtain the resonance condition

( )
det. ~– Rnl . e’Kizhi . Rul . e’17izhL = O. (6)

The resonant frequencies are obtained by solving (6).
The fields in layer (m) with m >1 can be expressed as

Hm+ = &(p). [e’fimz’m . Rnm + e-’fimzzm] . ~m

E~p = +7;(P) “ ~rn. o [e2Rm”z~ . R.m – e-zimzzm] . ijm.

(7)

By matching the boundaxy conditions that H,d = H(r+1)4 and
E,P = E(r+l)P at z = –d,, we have

(fin+~) “jr ‘Err+’)

[
. etk(r+l)z~r+l , fin(r+l) + e—’~(.+l)%~.+l

1
. P,+l

(Rnr-~) “
,& = I?;Z1 . E;.+,)?. . Fi-(r+l)z

[
.e ‘~$(r+’)”h”+’ . iin(r+l) – . 1‘Lx(”+’)zh”+’./?.+,(8)

{[

–1
Rnr = 7 – e’K(”+l)”h”+l . Rn(r+l) . etr<(”+’)”h~+’ . 17~z1 . .Efr+I)r . X(,+1),

-.

1( )
–1

–1

+[7+ eifi(r+’)zhr+’ . Rn(r+l) . ezR(.+l). k.+l]-l . %:+1)
}

{[ 1(
~ _ e@(r+@r+l . j&+l) . e’~(T+I)ZhT+I ‘1 . ~::1 . ~;r+l)r . ~(r+l)z ‘1

)

—
[
~+ e2K(m+1)zh+1 . En(r+l) . e

‘1
~K(r+l)zhr+l ‘1

. S;;+l)

1

Hm4 = &(p) . [etRmzfm + .Jimz(hm-’m) . RU~ . e’~mzhm] . Gm

(~+fiu)“e’Rrzh”“@r‘zr(r-l)“ F+e’R(r-l)zh”-l‘Ru(.-l)“e’R(r-’)zhr-’l “a’-’

(7-~4 “e2K”zhr “@r ‘R;: “~fr-l)”~(-’)

[

tK(F_,).h~-l . ~u(r_l) . e
. f–e= ~~(r_l).L-1

1
. 6.–1

(9)

(10)

(11)
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TABLE I
COMPARISONOFRESONANTFREQUENCIES(GHz) COMPUTEDBYUSINGTHISAPPROACHWITH

THOSEIN [7], N Is THENUMBEROFBASESFUNCTIONS,e, = 37.3, e, = 3.78, u = 0,427 mm

Mode N=1O N=15 N=20 N=25 N=30 [7],measured [7],mqmted
TEO, 7.02 7.02 702 7.02 7.02 7037 6.943
TE02 11.39 11.39 11.39 11.39 11.39 11.391 11.316
TMo, 9.54 9.45 943 9.42 9.41 9.296 9.185
TM,, 11.44 11.30 11.27 11.25 11.23 11,113 10.943

W&=D=l----b.

where ~,j is defined as (PC;l (P)7, (p), i;(p)). A recursive formula

is thus obtained as shown in (9) at the bottom of the previous page.

The fields in layer (m) with m <1 can be expressed as shown in
(10) at the bottom of the previous page. By matching the boundary
conditions that H,+ = H(r–IJ~ and E.p = EL~–IJP at ~ = –d,–1,

we have as shown in (11) at the bottom of the previous page. A
recursive formula is thus obtained as shown in (12) at the bottom
of the page.

The same procedure can be applied to the TE modes. First, consider
the TE modes in an infinitely long circular waveguide with an
inhomogeneous dielectic profile which is uniform along the axial
direction. Expand Maxwell’s equations in terms of Hz. Ho, and E4.

Next, expand the eigenmodes of E@ by a set of basis functions Sm (p),
and choose the Ed distribution in an empty circular waveguide as the

basis functions to expand E@. The eigenmodes can be obtained by
solving the eigenvalue problem formed by taking the inner product
of SP (p) with the equation satisfied by E+.

Next, use the waveguide modes to represe~t the fields in layer (1) of
—.

the resonator. Reflection matrices Rut and Rnl are defined to relate
the upward wave and the downward wave in layer (1). Finally, the
resonant frequencies are obtained by solving the resonance condition

=. =.
Recursive formulas for Ruz and l?nl can be derived by matching E4
and HP at interfaces between contiguous layers.

III. NUMERICALRESULTS

First, we show the resonant frequencies of the TEo1, TEOZ, TMo1,
and TMOZ modes of a cylindrical dielectric-loaded resonator as
shown in Table I. The results from [7] are also shown for comparison.

TABLE II
COMPARISONOFRESONANTFREQUENCIES(GHz) COMPUTED
BY USING THISAPPROACHWITHTHOSE INTHEREFERENCES,
N=30, c,=38, es=2.33, a=h =4mm, r=16

mm, 11 = 3 mm, 12 = 0.79 mm, [X] : [4] IN [8]

The convergence rate for the TEo 1 and TE02 modes are faster than

that for the TMo 1 and TMOZ modes in this case.

Table II shows the resonant frequencies of a dielectic resonator
on top of a substrate as in a circuit board environment. Our results

compare favorably with those in the literatures. Table III shows the
resonant frequencies of a cylindrical dielectric resonator. The results

are close to those in the literatures.
Next, we calculate the resonant frequencies of two symmetrically

coupled dielectric ring resonators in a circular waveguide. The
permittivity of the ring is assumed to have a parabolic profile with
an extreme value cm at p = (a + b)/ 2. The resonant frequencies

1

–1

e cIi(7_1)&h. –l ‘1
B<:_l)

}

–1 ~–r21?(r_1)zh. -1
1(

–1
e 1<,= E;r_l)r . X-(r–l)=

)

LA“
e

1

(r–l)zhr–1 ‘1
. 5.(;–1)‘1 (12)
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TABLE III
COMPARISONOFRESONANTFREQUENCIES(GHz) COMPUTEDBYUSINGTHIS

APPROACHWITHTHOSEINTHEREFERENCES,N = 30, G. = 35.74, h = 7.62
mm, 11 = 12 = 3.81 mm, a = 8.636 mm, r = 12.954 mm, [Y] : [20] IN [8]

I ModeIpresentI [8] [Y] I [91 I

~

plcljr
% Ia z

. . . . . --- —--— -— —-. +

12++_ h--_++l,

13.5-

n.
cm = Ifj

13- . . . -------------- ‘---

,/, em = 24.3
12-“ .

.. . . . . . . . . . . . . . ... . ..” ● . . .

1<~-
..-’

115 ,-”--
r,.

11 :’ . . ------------ ---- -------
./--- cm = 30 1

t
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Fig. 2. Resonant frequencies of the TEO1s mode of two symmetrically
coupled dielectric ring resonator, c,(p) = 24.3 + 4(e~ – 24.3)
(p – a)(b – p)/(b – a)z, C, = 1.031, C. = 1, b = 2,455 mm,
a = (J.3b, r’ = 2.39b, (b/L)2 = 0.4625. _: electric wall in the middle.
.—— —: magnetic wall in the middle (results from [3]).

are below the cutoff frequency of the circular waveguide. Due to the
structure symmetry, either an electric wall or a magnetic wall can
be inserted in the middle plane to form two equivalent problems.
The resulting resonant frequency are denoted by foe (electric wall)

ad f. ~ (magnetic wall), respectively. The resonant frequencies as a

function of the resonator separation are shown in Fig. 2. The results
with a flat profile in the ring match well with those in [3]. The
resonant frequency decreases as ~~ increases. The difference between
fo, and fo~ increases as the two resonators move closer to each
other.

14.5

14 -

. . . . . .
13.5- . . . . . . . . . . ~=18

---------------
13 -

------- . . . . . . . -a-

12.5... . . ... ..-

12 -
. . . .

-------- . . . . . . . . -------

11 -

If10,5 ‘

10

9.5 I I
o 1 2 3 4 5 6

M(rnm)

Fig. 3. Resonant frequencies of the TMO1b mode of two symmetrically
coupled dielectric rod resonator, e,(p) = 24 + (em – 24)(1 – p2/a2),
ES= 1.031, a = 3.635 mm, r = 5.45 mm, L = 4.o4 mm. _: electric
wall in the middle. – – ––: magnetic wall in the middle (results from [4]).

Finally, we calculate the resonant frequencies of two symmetri-
cal]y coupled dielectric rod resonators in a circular waveguide. The
permittivity of the rod is assumed to have a parabolic profile with
an extreme value em at p = O. The resonant frequencies are below
the cutoff frequency of the circular waveguide. As shown in Fig. 3,
the results with a flat profile in the rod match well with those in [4].
The resonant frequency decreases as cm increases. The difference
between fO, and fO~ increases as the two resonators move closer to

each other. Note that .fO, is lower than f~~ in this case, and .j’~~is
higher than ~o~ for the coupled dielectric rings in the previous case.

IV. CONCLUSION

A general numeric scheme combining the eigenvalue method and
the transverse resonance technique has been developed to calculate

the resonant frequencies of a cylindrical resonator consisting of
cascaded sections of circular waveguides loaded with inhornogeneous
dielectrics. The results obtained by using this approach compare

favorably with those in the literatures. The resonant frequencies with
continuous dielectric profiles have also been calculated, which can
not be done by using conventional mode-matching methods.
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Precision Broadband Wavemeter for
Millimeter and Submillimeter Range

Y. A. Dryagin, V. V. Parshin, A. F. Krupnov,
N. Gopalsami, and A. C. Raptis

Abstract— A precise, broadband, Fabry–Perot wavemeter has been
designed and built to measure wavelengths in the millimeter and submil-
Iimeter range. The design of the wavemeter is novel in that it enhances
the fundamental mode over a wide band and permits determination of
the exact longitudinal index of the mode. With the use of an exact mode
number in wavelength calculations, high measurement accuracies, to the
extent permissible by the quality factor of the resonator, can be obtained.
The wavemeter was tested by measuring well-known spectral fines of the
OCS molecule in the frequency range of 72-607 GHz. Measurement of 24
OCS lines demonstrated an accuracy of better than 2 x 10–5 in relative
units and 0.87 x 10 – 5 in rms units for frequency/wavelength. A dkcussion
of further development and automation of the wavemeter is included.

1. INTRODUCTION

In short-wave millimeter and submillimeter regions, open res-

onators of the Fab~–Perot type are analogs to closed cavities of

the centimeter and millimeter wave regions [1]. They are based on
concepts associated with optical frequencies and so are called quasi-
optical Fabry–Perot resonators. The most common resonator employs
a curved mirror at one end and a flat mirror at the other end. Stable
Gaussian-beam resonances of the TEM~~~ type can be supported
by these open resonators [2]. High quality factors on the order of
105 are routinely possible, which enable sharp resonances and high
measurement accuracy of resonance locations.

Even so, the conventional method of measuring wavelength leads
to diminished accuracy. It consists of tuning the high-Q quasi-optical
Fabry–Perot resonator to two consecutive resonances (two consecu-

tive longitudinal modes) and measuring the difference between the
corresponding positions of a movable mirror. The difference is equal
to half of the wavelength, with necessary diffraction corrections. The
procedure is subject to two main sources of error.

1)

2)

The measured wavelength is the small difference between the
two large distances (on the order of 100 mm) between the
mirrors at the @h and (q+ 1)th longitudinal modes. The relative
accuracy of measuring each resonance position is on the order
of 1/Q = 10 – 5, but the relative accuracy of the difference in
distance is on the order of q/Q = 10-”.

If the oscillator whose radiation wavelength is to be measured
drifts by 10–4 during the time the resonator is tuned from one

mode to the another, the error in the wavelength measurement
will be q x 10–4 = 10–2.
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