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Axisymmetric Modes of Cylindrical Resonators
with Cascaded Inhomogeneous Dielectrics

Jean-Fu Kiang

Abstract— A generic numerical scheme is developed to calculate
the resonant frequency of axisymmetric modes in an inhomogeneous
cylindrical dielectric resonator. The resonator consists of sections of
cylindrically stratified dielectrics within a cylindrical waveguide. In each
section, the TMy,, and TEy,,, waveguide modes are solved by expanding
the H, and Fy, components in terms of the eigenmodes in an empty
waveguide. The fields in each section are then expanded in terms of these
TMonm, and TEo,, modes. The transverse resonance technique is then
applied to obtain the resonant frequencies. Comparison with literatures
validates the effectiveness of this approach. Results with continuous
dielectric profiles are also obtained.

1. INTRODUCTION

Cylindrical cavities have been used to cure materials [1], to
measure complex permittivity of materials [2], and as a resonator
in microwave circuits [3]-[11]. In all these applications, the circular
waveguide section forming the cavity contains inhomogeneous di-
electrics. For the resonator application, the resonant frequencies of
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Fig. 1. Geometrical configuration of cascaded circular waveguide sections
loaded with inhomogeneous dielectrics.

the dielectric loaded cavity need to be determined precisely. Several
coupled dielectric rod or ring resonators can be arranged coaxially
in a circular waveguide to form a bandpass filter. The resonant
frequencies of the axisymmetric TEq;s and TMo1s modes have been
calculated by using a mode-matching technique [3], [4]. For both
modes, the resonant frequencies are below the cutoff frequency of
the TEq, waveguide mode. In [5] and [6], the resonant frequency
of nonaxisymmetric hybrid modes are calculated by using a similar
technique.

In [7], a finite integration technique (FIT) based on the integral
forms of Maxwell’s equations is proposed to calculate the resonant
frequencies of a cavity filled with an inhomogeneous dielectric. A
brief summary of mode nomenclature is also provided in [7]. In [8], a
variational expression is used to calculate the resonant frequencies of
axisymmetric modes where the radial variation of field components
are expanded by the first-order finite element (FE) basis functions
and the axial variation is expanded in terms of sinusoidals. Finite-
difference method in the frequency domain [9], finite-difference
time-domain (FDTD) method [10], and finite element method (FEM)
[11] have also been used.

Mode-matching method proves to be efficient for many canonical
resonator structures. For example, the cylindrical dielectric rod and
ring in a cylindrical cavity. Usually, the eigenmodes in a stratified
medium need to be solved first to represent the field distribution in
the later stage. If the dielectric ring consists of many layers or if
a dielectric rod has a continuous permittivity profile, conventional
mode-matching method becomes tedious or impossible. For such
structures, finite element method, FDTD method, and FIT method can
be used at the expense of finer grids to express the fields accurately.

In this paper, we will present a generic numeric scheme to solve
such problems. First, the eigenmodes in each uniform dielectric
loaded waveguide section are obtained by solving a symmetric
eigenvalue problem, where dielectrics with continuous profile can
also be handled. Reflection matrices at the junctions of waveguide
sections are defined to reduce the number of unknowns. Then the
transverse resonance technique is applied to obtain the resonant
frequencies of the resonators.

II. FORMULATION

Fig. 1 shows the configuration of a cylindrical resonator with radius
a, which consists of several sections of circular waveguides loaded
with inhomogeneous dielectrics. The permittivity in each layer is a
piecewise continuous functions of p and is independent of ¢ and =.
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Axisymmetric modes exist in such a medium, and are categorized
into TM (to z ) and TE ( to z ) modes [7]. For the TM modes, the
existing field components are E,, F,, and H,. For the TE modes,
the existing field components are H., H,, and Ey.

First, consider the TM modes in an infinitely long circular wave-
guide with an inhomogeneous dielectric profile which is uniform
along the axial direction. Expand Maxwell’s equations to obtain
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Next, express Hy of the nth eigenmodes by a set of basis functions
Sm(p) as
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where b, = [bn1,,bnn], and S'(p) = [S1(p).---.Sn(p)].
Choose the Hy distribution in an empty circular waveguide as
the basis functions, i.e., Sm(p) = Ji(€mp/a) with Jo(&n) = 0.
Substitute (2) into (1), then take the inner product of S,(p) with the
resulting equation and use the integration by parts technique to have

anm[ (22 15,(0) 250 + (5ol oS0

m=1

= kiz Z bnm<sp(l’)vpf

m=1

"Sm(p))s1<p< N 3

where the inner product is defined over 0 < p < a. Hence, (3)

constitutes a symmstric eigenvalue problem to be solved numerically

for the propagation constant k... The eigenvectors b,’s satisfy

the orthonormality specification that &, + N « b,y = &, where
= (8(p), p'5*(p)). The general field in the waveguide can

be expressed in terms of these eigenmodes as
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Next, use the waveguide modes to represent the fields in layer (1)
of the resonator as

Hiy = F(p)- [oF07 a5
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where 21 = z + di. The first term in Hyy and Ej, is a wave
propagating in the +z direction, and the second term is a wave
propagating in the —z direction. Define a reflection matrix R,
at the upper boundary z = —d;—1 so that the reflection matrix
multiplied by the upward wave gives the downward wave, ie.,
Rui e b, ‘a = ek, - B1. Define another reflection matrix Rm
at the lower boundary z = —d; so that the reflection matrix multiplied
by the downward wave gives the upward wave, i.e., Rn; - 61 = a&;.

Thus, we obtain the resonance condition
det.(I:— f?m et Bk, Eul . e’Rl‘h‘) =0. 6)

The resonant frequencies are obtained by solving (6).
The fields in layer (m) with m > [ can be expressed as
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By matching the boundary conditions that H.y = H(,.11)s and
E., = E(41), at z = —d,, we have
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TABLE I

COMPARISON OF RESONANT FREQUENCIES (GHZ)
THOSE IN [7], N Is THE NUMBER OF BAsIs FUNCT!

CoMPUTED BY USING THIS APPROACH WITH
TONS, € = 37.3, €5 = 3.78, v = 0.427 mm

Mode [N=10 | N=15 | N=20 | N=25| N =30 | [7], measured | [7], computed
TEy, | 702 | 7.02 | 702 | 702 | 7.02 7 037 6.043
TEy | 1139 | 1139 | 1139 | 11.39 | 11.39 11.301 11.316
TMo | 954 | 945 | 943 | 942 | 941 5.296 9.185
TMoy | 1144 | 1130 | 1127 | 1195 | 11.23 11113 10.943

17u | Tu [

L i u A
—d e - ——+ ——re——
&
e 1 5 e pbet— 87 — bt 81z —
where B, is defined as {pe; " (p)$.(p), @} (p)). A recursive formula TABLE TI

is thus obtained as shown in (9) at the bottom of the previous page.

The fields in layer (m) with m < I can be expressed as shown in
(10) at the bottom of the previous page. By matching the boundary
conditions that H,4 = H(,_1y4 and E,, = E(,_1), at 2 = —d,_1,
we have as shown in (11) at the bottom of the previous page. A
recursive formula is thus obtained as shown in (12) at the bottom
of the page.

The same procedure can be applied to the TE modes. First, consider
the TE modes in an infinitely long circular waveguide with an
inhomogeneous dielectric profile which is uniform along the axial
direction. Expand Maxwell’s equations in terms of H.. H,, and F.
Next, expand the eigenmodes of E, by a set of basis functions Sy, {p),
and choose the E distribution in an empty circular waveguide as the
basis functions to expand E,. The eigenmodes can be obtained by
solving the eigenvalue problem formed by taking the inner product
of S‘p(p) with the equation satisfied by Ey.

Next, use the waveguide modes to represent the fields in layer (7) of
the resonator. Reflection matrices Ry; and Rr; are defined to relate
the upward wave and the downward wave in layer ({). Finally, the
resonant frequencies are obtained by solving the resonance condition

20l

o3

det. (}‘— Re-eBth Ry e’ﬂ'lzhl) =0. (13)

Recursive formulas for Ry; and Rn; can be derived by matching Ey
and H, at interfaces between contiguous layers.

III. NUMERICAL RESULTS

First, we show the resonant frequencies of the TEoi, TEg2. TMo1,
and TMy, modes of a cylindrical dielectric-loaded resonator as
shown in Table I. The results from [7] are also shown for comparison.

COMPARISON OF RESONANT FREQUENCIES (GHz) COMPUTED

BY USING THIS APPROACH WITH THOSE IN THE REFERENCES,

N =30,¢, =38,es =233, a=h=4mm, r =16
mm, Iy = 3 mm, Il = 0.79 mm, [X] : [4] N [8]

{Mode [ present | [§] [x]
TEq | 682 ] 682 | 673
TEq, | 10.75 | 10.79 -
TEes | 12.02 |12.09 | 12.10
TMg | 952 9.51 | 940
TMo, | 13.13 | 13.10 -

?Z
——
I

h y Ih—a-»[

I ;

3 5 e

ilz : €s
H
1

The convergence rate for the TEq; and TEgy modes are faster than
that for the TMy; and TMg2 modes in this case.

Table II shows the resonant frequencies of a dielectric resonator
on top of a substrate as in a circuit board environment. Our results
compare favorably with those in the literatures. Table III shows the
resonant frequencies of a cylindrical dielectric resonator. The results
are close to those in the literatures.

Next, we calculate the resonant frequencies of two symmetrically
coupled dielectric ring resonators in a circular waveguide. The
permittivity of the ring is assumed to have a parabolic profile with
an extreme value €, at p = (a + b)/2. The resonant frequencies
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TABLE III
COMPARISON OF RESONANT FREQUENCIES (GHz) CoMPUTED BY USING THIS
APPROACH WITH THOSE IN THE REFERENCES, IV = 30, ¢, = 35.74, h = 7.62
mm, {1 =l = 3.81 mm, ¢ = 8.636 mm, r = 12.954 mm, [Y] : {20} IN [8]

Mode | present | [8] Iyl o1 ]
TEq | 3428 | 3435 | 3.428 | 3.429
TEp | 5419 | 5.493 | 5.462 | 5.412
TMa | 4.572 |4.601 | 4.551 | 4.542
r . I“ 7z
b ] ¥ R .
- ] et ], ——ble— [, >
145 T T —

fae’ fom ( GHz )

95 — 1 1 I _
1 2 3 4 5 6
M ( mm )
i
1
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‘M -vla [ -»i
i

Fig. 2. Resonant frequencies of the TEg1s mode of two symmetrically
coupled dielectric ring resonator, €-(p) = 24.3 + 4(em — 24.3)
(p—a)b—p)/(b—a)? e = 1.031,¢, = 1, b = 2.455 mm,
a = 0.3b, r = 2.39b, (b/L)? = 0.4625. : electric wall in the middle.
— — — — magnetic wall in the middle (results from [3]).

are below the cutoff frequency of the circular waveguide. Due to the
structure symmetry, either an electric wall or a magnetic wall can
be inserted in the middle plane to form two equivalent problems.
The resulting resonant frequency are denoted by foe (clectric wall)
and fo (magnetic wall), respectively. The resonant frequencies as a
function of the resonator separation are shown in Fig. 2. The results
with a flat profile in the ring match well with those in [3]. The
resonant frequency decreases as €, increases. The difference between
foe and fon. increases as the two resonators move closer to each
other.
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Fig. 3. Resonant frequencies of the TMg;s mode of two symmetrically
coupled dielectric rod resonator, €-(p) = 24 + (em — 24)(1 — p?/a?),
€s = 1.031, a = 3.635 mm, r = 5.45 mm, L = 4.04 mm. —__: electric
wall in the middle. — — — — magnetic wall in the middle (results from [4]).

Finally, we calculate the resonant frequencies of two symmetri-
cally coupled dielectric rod resonators in a circular waveguide. The
permittivity of the rod is assumed to have a parabolic profile with
an extreme value €, at p = 0. The resonant frequencies are below
the cutoff frequency of the circular waveguide. As shown in Fig. 3,
the results with a fiat profile in the rod match well with those in [4].
The resonant frequency decreases as €,, increases. The difference
between fo. and fo., increases as the two resonators move closer to
each other. Note that f,. is lower than f,», in this case, and foe is
higher than f,,, for the coupled dielectric rings in the previous case.

IV. CONCLUSION

A general numeric scheme combining the eigenvalue method and
the transverse resonance technique has been developed to calculate
the resonant frequencies of a cylindrical resonator consisting of
cascaded sections of circular waveguides loaded with inhomogeneous
dielectrics. The results obtained by using this approach compare
favorably with those in the literatures. The resonant frequencies with
continuous dielectric profiles have also been calculated, which can
not be done by using conventional mode-matching methods.
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Precision Broadband Wavemeter for
Millimeter and Submillimeter Range

Y. A. Dryagin, V. V. Parshin, A. F. Krupnov,
N. Gopalsami, and A. C. Raptis

Abstract— A precise, broadband, Fabry-Perot wavemeter has been
designed and built to measure wavelengths in the millimeter and submil-
limeter range. The design of the wavemeter is novel in that it enhances
the fundamental mode over a wide band and permits determination of
the exact longitudinal index of the mode. With the use of an exact mode
number in wavelength calculations, high measurement accuracies, to the
extent permissible by the quality factor of the resonator, can be obtained.
The wavemeter was tested by measuring well-known spectral lines of the
OCS molecule in the frequency range of 72-607 GHz. Measurement of 24
OCS lines demonstrated an accuracy of better than 2 x 10> in relative
units and 0.87 x 10~° in rms units for frequency/wavelength. A discussion
of further development and automation of the wavemeter is included.

1. INTRODUCTION

In short-wave millimeter and submillimeter regions, open res-
onators of the Fabry—Perot type are analogs to closed cavities of
the centimeter and millimeter wave regions [1]. They are based on
concepts associated with optical frequencies and so are called quasi-
optical Fabry—Perot resonators. The most common resonator employs
a curved mirror at one end and a flat mirror at the other end. Stable
Gaussian-beam resonances of the TEMmnq type can be supported
by these open resonators [2]. High quality factors on the order of
10° are routinely possible, which enable sharp resonances and high
measurement accuracy of resonance locations.

Even so, the conventional method of measuring wavelength leads
to diminished accuracy. It consists of tuning the high-(J quasi-optical
Fabry-Perot resonator to two consecutive resonances (two consecu-
tive longitudinal modes) and measuring the difference between the
corresponding positions of a movable mirror. The difference is equal
to half of the wavelength, with necessary diffraction corrections. The
procedure is subject to two main sources of error.

1) The measured wavelength is the small difference between the
two large distances (on the order of 100 mm) between the
mirrors at the ¢th and (g-+1)th longitudinal modes. The relative
accuracy of measuring each resonance position is on the order
of 1/Q = 107", but the relative accuracy of the difference in
distance is on the order of ¢/Q = 1072,

2) 1If the oscillator whose radiation wavelength is to be measured
drifts by 10 during the time the resonator is tuned from one
mode to the another, the error in the wavelength measurement
will be ¢ x 107* = 1072,
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